Continuity of a Function

IMPORTANT

Continuity of a Function: Overview

This topic covers concepts, such as, Continuity of a Function, Continuity of a Function at a Point, Jump of Non-removable Discontinuity & Oscillatory Discontinuity etc.

Important Questions on Continuity of a Function

HARD
IMPORTANT

Let gx  be a polynomial of degree one and fx  be a continuous and differentiable function defined by fx=gx,x01+x2+x1x,x>0. If f'1=f'-1, then

HARD
IMPORTANT

fx=sin-1x2·cos1/x if x0; f0=0, fx is:

HARD
IMPORTANT

Let f(x)=[n+psinx],x(0,π),nI and p is a prime number. The number of points where f( x ) is not differentiable is

( Here x represents the greatest integer less than or equal to x )

HARD
IMPORTANT

If  f x = [ x + x + x sin x for x 0 0 for x = 0 where x denotes the fractional part function, then:

EASY
IMPORTANT

Choose the correct statement on the continuity of the function f given by  fx=x,if x0x2,if x<0at x=0

HARD
IMPORTANT

The following function:   f( x )=sinx+cosx,x[ 0, π 2 ] is verifying which of the following rule or theorem:

MEDIUM
IMPORTANT

Choose the correct comment explaining the continuity of the function f defined by   f( x )={ x+2, ifx<1 0, ifx=1 x2, ifx>1 at x=1.

EASY
IMPORTANT

 

If   f(x)={ x 2 25 x5 , whenx5 k, whenx=5   is continuous at   x=5,   then

HARD
IMPORTANT

Let f be a real-valued function defined on the interval   (0,)  by   f(x)=nx+ 0 x 1+sint dt.  Then which of the following statement(s) is (are) true?

HARD
IMPORTANT

Let f:RR be defined as

fx=ex;   x<0aex+x-1;    0x<1b+sinπx;   1x<2e-x-c;        x2

where, a,b,cR and · denotes greatest integer function. Then which of the following is true?

MEDIUM
IMPORTANT

If fx=x;      xQ-x;   xQ, find the points where fx is continuous.

MEDIUM
IMPORTANT

Find the number of discontinuity of the function fx=5x+3x in 0,5 where y & y denotes largest integer less than or equal to y and fractional part of y respectively.

HARD
IMPORTANT

Let fx=limnln1+x-x2nsinx21+x2n. Which of the following statements(s) is(are) correct?

HARD
IMPORTANT

If fx=limn1-cos1-tanπ4-xx+1n+λsinn-n2-8nxx2x+1n+x; x0 is continuous at x=0, then find the value of f0+4λ.

MEDIUM
IMPORTANT

If the function f defined by fx=5x-5-x2;   x0k;                 x=0 is continuous at x=0, then k=

HARD
IMPORTANT

Suppose a function fx is defined by

fx=x2-1;    -1x<02x;            0<x<11;              x=1-2x+4;   1<x<20;               2<x<3

Then answer the following questions:

1 Does f-1 exists?

2 Does limx-1+fx exists?

3 Does limx-1+fx=f-1?

4 If f defined at x=3?

5 Is f continuous at x=3?

6 At what value of x is f continuous?

7 What value should be assigned to f2 to make the extended function continuous at x=2?

MEDIUM
IMPORTANT

A function fx is defined as follows:

fx=sinxx;  x02;         x=0

Is fx continuous at x=0?

If not, redefine it so fx becomes continuous at x=0.

MEDIUM
IMPORTANT

fx=sinx, where · denotes the greatest integer function, is/are continuous at

MEDIUM
IMPORTANT

Test the continuity of fx at x=0 where fx=xe1x1+e1x; x00;            x=0.

HARD
IMPORTANT

Consider  fx=xx2log1+x2      for   -1<x<0lnex2+2xtanx   for   0<x<1 where · and · are the greatest integer function and fractional part function respectively, then